Abstract

A microscopic analysis of current and voltage fluctuations in GaAs Schottky barrier diodes under forward-bias conditions in the absence of 1/f contributions is presented. Calculations are performed by coupling self-consistently an ensemble Monte Carlo simulator with a one-dimensional Poisson solver. By using current- and voltage-operation modes the microscopic origin and the spatial location of the noise sources, respectively, is provided. At different voltages the device exhibits different types of noise (shot, thermal, and excess), which are explained as a result of the coupling between fluctuations in carrier velocity and self-consistent field. The essential role of the field fluctuations to correctly determine the noise properties in these diodes is demonstrated. The results obtained for the equivalent noise temperature are found to reproduce the typical behavior of experimental measurements. An equivalent circuit is proposed to predict and explain the noise spectra of the device under thermionic emission-based operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call