Abstract

Insight into the processes of evolutionary change can be obtained by studying the distribution of genetic diversity among populations. Such diversity can be shaped by historical colonization events, population connectivity and adaptation to local selection pressures. Here we examine genetic differentiation of Trinidadian guppies, Poecilia reticulata, by genotyping 373 individuals from 15 populations located in three drainages (northern coast, Caroni and Oropouche) with 7 microsatellite loci. Our data provide little evidence to support previous claims of two major genetic lineages of guppies in northern Trinidad but instead suggest a more complex pattern of gene flow among populations from different drainages. First, some of the populations in the Caroni drainage show genetic signatures similar to those in the Oropouche drainage. Second, the populations in the northern coast are all highly differentiated from those in either the Caroni or Oropouche drainages. Despite differing selection regimes owing to predation pressure, populations from upstream and downstream locales typically cluster together, albeit upstream populations consistently have less genetic variability than the corresponding downstream population. There is, however, no overall pattern of isolation by distance. We also find evidence that an artificially transplanted population from the Caroni drainage is successfully invading into other populations within the Oropouche system. Our analysis details the genetic and phylogeographic structure of Trinidadian guppies in the northern range and provides insight into evolutionary processes at different timescales that have shaped genetic heterogeneity in this fish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call