Abstract
The highly diverse genes of the major histocompatibility complex (MHC) are important in the adaptive immune system and are expected to be under selection from pathogens. Thus, the MHC genes provide an exceptional opportunity to investigate patterns of selection within and across populations. In this study, we analyzed genetic variation at the MHC class IIB gene and six microsatellite loci across 10 populations of guppies (Poecilia reticulata) in the northern range of Trinidad. We found a high level of diversity at the MHC, with a total of 43 alleles in 142 individuals. At the population level, we found that neutral evolution could not fully account for the variability found at the MHC. Instead, we found that MHC F(ST) statistics were lower than F(ST) derived from the microsatellite loci; 33 of 45 population pairwise estimates for the MHC were significantly lower than those for the microsatellite loci, and MHC F(ST) estimates were consistently lower than those predicted by a coalescent model of neutral evolution. These results suggest a similar selection acting across populations, and we discuss the potential roles of directional and balancing selection. At the sequence level, we found evidence for both positive and purifying selection. Furthermore, positive selection was detected within and adjacent to the putative peptide-binding region (PBR) of the MHC. Surprisingly, we also found a purifying selection at two sites within the putative PBR. Overall, our data provide evidence for selection for functional diversity at the MHC class IIB gene at both the population and nucleotide levels of guppy populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.