Abstract

Major histocompatibility complex (MHC) genes are candidates for determining disease susceptibility due to their pivotal role in both innate and adaptive immune responses. Accordingly, the association between the genetic variation of MHC genes and the pathogen resistance has been investigated in numerous vertebrates. To date, however, little is reported in amphibians. In this study, we investigate the genetic variation at the MHC class IIB gene in the giant spiny frog Quasipaa spinosa, which has high commercial value in China. The full length of MHC class IIB cDNA was cloned from Q. spinosa by homology cloning and rapid amplification of cDNA end-polymerase chain reaction (RACE-PCR). Two MHC class IIB loci were identified in Q. spinosa. We also developed PCR primers for a portion of the second exon of the MHC class IIB gene. A total of 26 MHC class IIB alleles were identified. The dN rate was significantly higher than the dS rate in the putative peptide-binding region, thereby proving the positive selection hypothesis. In addition, individuals intraperitoneally injected with Aeromonas hydrophila were used to study the association between MHC class IIB alleles and pathogen resistance/susceptibility, to explore the specific alleles in balancing selection. Eighty frogs were used after exposure to A. hydrophila infection. Nine alleles were used to study the association between the alleles and disease resistance. Two alleles, namely, Pasa-DAB∗1301 and Pasa-DAB∗0901, were significantly associated with resistance against A. hydrophila. This study provides valuable information on the structure of the MHC class IIB gene and confirms the association between MHC class IIB gene alleles and disease resistance to bacterial infection in Q. spinosa. Moreover, pathogen resistance-related MHC markers can be used for the selective breeding of the giant spiny frog.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call