Abstract

Genetic variation in the major histocompatibility complex (MHC) class IIB was tested in Japanese flounder ( Paralichthys olivaceus) for survival after challenge with bacterial infection. The material consisted of 6000 Japanese flounder from 60 families challenged with Vibrio anguillarum, which causes significantly different mortality in flounder families. Five individuals from each of six high-resistance (HR) and six low-resistance (LR) families were screened for their MHC class IIB genotypes using sequence analysis. High polymorphism of MHC IIB gene and at least three loci were discovered in Japanese flounder and the rate of d N occurred at a significantly higher frequency than that of d S in PBR. Among 60 individuals, 76 alleles were discovered and 15 alleles were used to study associations between alleles and resistance to disease. We found highly significant associations between resistance towards infectious disease caused by V. anguillarum and MHC class IIB polymorphism in Japanese flounder. Some alleles appeared in both HR and LR families, while some alleles were only discovered in HR or LR families. One allele, Paol-DAB*4301, was significantly more prevalent in HR families than in LR families ( P = 0.023). Paol-DAB*0601, Paol-DAB*0801, Paol-DAB*2001, Paol-DAB*3803 were discovered in two HR families with high frequency. One allele, Paol-DAB*1601, was discovered in three LR families. The steady heredity of MHC class IIB alleles was observed, and the family having Paol-DAB*4301 alleles was confirmed with higher resistance to V. anguillarum. This study confirmed the association between alleles of MHC class IIB gene and disease resistance, and also detected some alleles which might be correlated with high bacterial infection resistance. The disease resistance-related MHC markers could be used for molecular marker-assisted selective breeding in the flounder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call