Abstract
To identify differentially expressed microRNA in the serum and renal tissues of cats with experimentally induced chronic kidney disease (CKD). Banked renal tissues and serum from 4 cats. Cats previously underwent 90-minute unilateral ischemia with delayed contralateral nephrectomy 3 months after ischemia. Tissues were collected from the contralateral kidney at the time of nephrectomy and from the ischemic kidney 6 months after nephrectomy (study end). Serum was collected prior to ischemia (baseline serum) and at study end (end point serum). Total RNA was isolated from tissues and serum, and microRNA sequencing was performed with differential expression analysis between the contralateral and ischemic kidney and baseline and end point serum. 20 microRNAs were differentially expressed between ischemic and contralateral kidneys, and 52 microRNAs were differentially expressed between end point and baseline serum. Five microRNAs were mutually differentially expressed between ischemic and contralateral kidneys and baseline and end point serum, with 4 (mir-21, mir-146, mir-199, and mir-235) having increased expression in both the ischemic kidney and end point serum and 1 (mir-382) having increased expression in the ischemic kidney and decreased expression in end point serum. Predicted target search for these microRNA revealed multiple genes previously shown to be involved in the pathogenesis of feline CKD, including hypoxia-inducible factor-1α, transforming growth factor-β, hepatocyte growth factor, fibronectin, and vascular endothelial growth factor A. MicroRNAs were differentially expressed after CKD induction in this preliminary study. Regulation of renal fibrosis in feline CKD may occur through microRNA regulation of mRNAs of pro- and anti-fibrotic genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.