Abstract

Although several studies have been reported on the micropropagation of the pistachio and its rootstocks, to date none of them had been efficient on the mass production of these plants in bioreactor systems. Thus, the micropropagation of juvenile pistachio shoot tips and nodal buds was investigated in a temporary immersion bioreactor system (RITA®) and on a conventional semi-solid medium. Among the tested immersion conditions, immersion for 24 min every 16 h reduced vitrification and improved proliferation in the pistachio. Interactions were evident in immersion time and frequency in nodal segments. Nodal buds were better than shoot tips as the highest multiple shoot formation was recorded in MS medium containing 4 mg L−1 BA and 0.1 mg L−1 GA3 in RITA®. Although shoot tip necrosis (STN) was observed in shoots proliferated on semi-solid MS medium, such a symptom did not occur in shoots sprouted in the RITA®. Additionally, these optimized conditions were applied to nodal buds of mature male pistachio ‘Atli’ and Pistacia rootstocks (P. khinjuk Stocks and P. atlantica Desf.), and the micropropagation in the bioreactor system, in comparison to the semi-solid medium, was also improved. Furthermore, in vitro rooting of pistachio plantlets, despite the lower range (27.5 %), was also achieved in RITA®. However, rooting was better on semi-solid medium for all tested species (ranged between 50 and 70 %). The results of this study showed that RITA® could be used for the mass propagation of pistachio and its rootstocks, as well as for other woody plant species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.