Abstract
The low porosity and wide pore size distribution of biaxial stretching PP microporous membranes continue to be the primary impediments to their industrial application. To solve this problem, there is a critical and urgent need to study the micropore-forming mechanism of PP membranes. In this research, the interfacial micropore formation mechanism of PA6/PP membranes during biaxial stretching was investigated. PA6/PP membranes containing spherical PA6 and fibrillar PA6 were found to exhibit different interfacial micropore formation mechanisms. Numerous micropores were generated in the PA6/PP membranes, containing PA6 spherical particles via the interface separation between the PP matrix and PA6 spherical particles during longitudinal stretching. Subsequent transverse stretching further expanded the two-phase interface, promoting the breakdown and fibrosis of the PP matrix and forming a spider-web-like microporous structure centered on spherical PA6 particles. In PA6/PP membranes with PA6 fibers, fewer micropores were generated during longitudinal stretching, but the subsequent transverse stretching violently separated the PA6 fibers, resulting in a dense fiber network composed of PA6 fibers interwoven with PP fibers. Crucially, the PA6/PP biaxial stretching of microporous membranes presented an optimized pore structure, higher porosity, narrower pore size distribution, and better permeability than β-PP membranes. Furthermore, this study explored a new approach to the fabrication of high-performance PA6/PP microporous membranes, with good prospects for potential industrial application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.