Abstract

Despite the omnipresence of microplastics (MPs), the studies around the western continental shelf of Indian Ocean (Eastern Arabian Sea-EAS) are uncovered and understudied. Thus, the present study was focused to understand the spatial distribution, characterization and risk assessment of MPs in sediment across seven coastal transects (10 to 50 m) all along the EAS shelf. The highest MPs concentration (MPs/kg d.w.) was detected in the northern EAS (NEAS; 2260 ± 1050) followed by central (CEAS; 1550 ± 1012) and southern (SEAS; 1300 ± 513) shelves. Among all distinct locations, the highest concentration of MPs (2500 ± 1042) was detected in the north coastal sediments off Mumbai, followed by off Mangalore (1480 ± 1169) in the center and off Kochi (1350 ± 212) in the south. MPs were found in the form of fibres, fragments and films with a predominance of fibres (~70–80 %). Approximately 74.6 % of the total MPs were in the size range of 300 μm to 5 mm. The surface of detected MPs was rough, irregular, and mechanical weathering features such as pits, grooves also observed and spotted with bacterial community structures. Polypropylene (PP; 34 %), polyisoprene (PIP; 19 %), butyl rubber (18 %), and low-density polyethylene (LDPE; 13 %) were dominant polymers. The pollution load index highlighted minor risk while the polymer hazard index exhibited a hazard level of V. Litter discharge, fishing activities, and active marine navigation are among the many high-risk sources of plastic contamination in this region. Due to the prevailing winds, currents, low sea surface height, and high precipitation, the conditions in the EAS are favorable for the accumulation of both sea-based and land-based particles. Hence, this study provides novel insights into the potential risks posed by MP to the IO rim and associated marine ecosystem which will enhance our knowledge of the ecological implications and consequences of MP pollution, ultimately aiding in developing effective management and mitigation strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call