Abstract

Microplastics accumulation on beaches raises a serious concern worldwide. Hence, the present study was conducted with the focus of investigating the abundance, characteristics, risk assessment, surface morphology and elemental composition of microplastics (MPs) in the beach sediments of the Thoothukudi region, situated on the south-east coast of India, Gulf of Mannar region. The MPs abundance ranged between 19 ± 18.62 and 78.55 ± 95.17 items/kg with a mean abundance of 33.82 ± 26.11 items/kg and the spatial distribution of MPs showed insignificant variation. Fragments (59.48%), 0.5-1mm (43.66%) and blue-coloured MPs (45.61%) were highly predominant in the sediments. Attenuated total reflection - Fourier transform infrared (ATR-FTIR) spectroscopy showed the dominance of polyethylene polymers in sediments (52.26%) and their sources could be attributed to the direct inflow of sewage, recreational and fishing activities and accidental loss. The current study revealed that microplastics (< 5mm) are ubiquitous along the Thoothukudi coast, posing a serious threat to the marine environment and marine organisms. The ecological risk assessment of MPs in sediments was calculated by adopting 3 models: the polymer hazard index (PHI), pollution load index (PLI) and potential ecological risk assessment (RI). The overall PHIsediments = 698.96 exhibited a hazard level of IV, which was mainly due to the varying abundance of polymer composition in sediments. The value of PLIsediments is 2.51, which mainly depends on the MPs abundance in sediments and yields the hazard level of I. The ecological risk posed by MPs in beach sediments along the Thoothukudi coast (RIsediments = 241.06) falls into the medium category, indicating that steps must be taken to reduce the flow of plastics through management measures such as proper wastewater treatment practices, recycling of plastic waste and proper waste disposal. Field emission scanning electron microscopy (FESEM) images revealed that MPs surfaces were strongly weathered and energy dispersive X-ray (EDX) spectroscopy spectra showed that the presence of inorganic elements associated with the surface MPs might be derived from the surrounding environment or additives in plastics. Hence, further research has to be conducted in view of studying the combined effects of MPs pollution and organic pollutants, which will provide further understanding of the contamination of MPs in the marine environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call