Abstract

Over the past decade, microresonator-based soliton combs based on photonic integration have broadened the scope of applications in sensing, ranging, and imaging. The large comb line spacing on the order of hundreds of gigahertz allows for rapid acquisition of absorption spectra in the condensed matter phase without aliasing via a dual-comb interferometer. We present a proof-of-principle demonstration of high-throughput label-free microresonator-based dual-comb spectroscopy in a microfluidic chip that dynamically probes the linear absorption of liquid acetone in the mid-infrared wavelength regime. We measure the flow dynamics of an acetone droplet with a spectral acquisition rate of 25kHz (40μs per spectrum) covering a spectral range from 2900 to 2990nm. Combining microfluidics and silicon-photonic technology would potentially enable a compact time-resolved spectroscopy system for a wide range of applications such as chemical synthesis, biological cell-sorting, and lab-on-a-chip.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call