Abstract

The design of high-radix switch chips is becoming a challenging research field in EHPC (Exascale High-Performance Computing). Recent development of silicon photonic and 3D integration technologies has inspired new methods of designing high-radix switch chips. In this paper, we propose a high-radix switch architecture called Grahpein, which improves the radix and bandwidth while lowering switch chips power consumption by 3D integration and silicon photonic technology. The simulation result also shows that the average latencies under both random and hotspot patterns are less than 10 cycles, and the throughput under random pattern is more than 95%. Compared to hi-rise architecture, the proposed architecture ensures the packets from different source ports receive fairer service, thereby yielding more concentrated latency distribution. In addition, the power consumption of the Graphein chip is about 19.2 W, which totally satisfies the power constraint on a high-radix switch chip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call