Abstract

ABSTRACTHydrogenated microcrystalline silicon (µc-Si:H) p-i-n solar cells have been prepared using a conventional RF plasma-enhanced chemical vapor deposition (PECVD) method at a low process temperature of 140 °C. The low temperature deposition of µc-Si:H has been found to be effective to suppress the formation of oxygen-related donors that cause a reduction in open circuit voltage (Voc) due to shunt leakage. We demonstrate the improvement of Voc by lowering the deposition temperature down to 140, while suppressing the reduction in high short circuit current density (Jsc) and fill factor (FF). A high efficiency of 8.9% was obtained using an Aasahi-U substrate. Furthermore, by optimizing textured structures on ZnO transparent conductive oxide (TCO) substrates, an efficiency of 9.4% (Voc=0.526V, Jsc=25.3mA/cm2, FF=0.710) was obtained. In addition, relatively high efficiency of 8.1% was achieved using VHF (60MHz) plasma at a deposition rate of 12 Å/s. Thus, this low temperature deposition technique for µc-Si:H is promising for both high efficiency and high rate deposition of µc-Si:H solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.