Abstract

No consensus exists concerning the acceptable ranges of marginal fit for lithium disilicate crowns fabricated with either heat-pressing techniques or computer-aided design and computer-aided manufacturing (CAD/CAM) systems. The purpose of the study was to evaluate with micro-computed tomography the marginal fit of lithium disilicate crowns fabricated with different chairside CAD/CAM systems (Cerec or E4D) or the heat-pressing technique. Lithium disilicate crowns were fabricated to fit an invitro cast of a single human premolar. Three fabrication techniques were used: digital impressions with Cerec 3D Bluecam scanner with titanium dioxide powder, followed by milling from IPS e.max CAD for Cerec; digital impressions with E4D Laser scanner without powder, followed by milling from IPS e.max CAD for E4D; and fabrication from IPS e.max Press by using the lost-wax and heat-pressing techniques. Each crown was fixed to the cast and scanned with micro-computed tomography to obtain 52 images for measuring the vertical and horizontal fit. Data were statistically analyzed by 1-way ANOVA, followed by the Tukey honestly significant difference test (α=.05). The mean values of vertical misfit were 36.8 ±13.9 μm for the heat-pressing group and 39.2 ±8.7 μm for the Cerec group, which were significantly smaller values than for the E4D group at 66.9 ±31.9 μm (P=.046). The percentage of crowns with a vertical misfit<75 μm was 83.8% for Cerec and heat-pressing, whereas this value was 65% for E4D. Both types of horizontal misfit (underextended and overextended) were 49.2% for heat-pressing, 50.8% for Cerec, and 58.8% for E4D. Lithium disilicate crowns fabricated by using the Cerec 3D Bluecam scanner CAD/CAM system or the heat-pressing technique exhibited a significantly smaller vertical misfit than crowns fabricated by using an E4D Laser scannerCAD/CAM system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call