Abstract
Vegetation, microclimate, seedling frequency, freezing tolerance, and cold acclimation were compared for seedlings of Artemisia tridentata collected from 1775, 2175, and 2575 m elevation in the eastern Sierra Nevada, California. Data were used to test the hypothesis that ecotypic differences in stress physiology are important for seedling survival along gradients from desert to montane ecosystems. The vegetation canopy cover and A. tridentata seedling frequency were greatest at 2575 m, compared to 1775 and 2175 m. Snow cover ameliorated temperatures near the soil surface for part of the winter and depth varied across elevations. Freezing tolerance was compared for seedlings maintained in growth chambers at day/night air temperatures of 25°C/15°C. The temperature at which electrolyte leakage and Photosystem II function ( F V/ F M) from leaves were half-maximum was approximately −13·5°C for leaves of seedlings from all three elevations. Shifting day/night air temperatures from 25°C/15°C to 15°C/5°C initiated about 1·5° of acclimation by plants from all three altitudes, with seedlings from the highest elevation exhibiting the greatest acclimation change. Measurements of ambient air and canopy temperatures at the three elevations indicated that wintertime average low temperatures were consistent with the measured degree of freezing tolerance. At small spatial scales used in this study, pollen and seed dispersal between study sites may have precluded resolution of ecotypic differences. Patterns of freezing tolerance and cold acclimation may depend on a combination of mesoclimate and microclimate temperatures, canopy cover, snow depth, and snow melt patterns.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have