Abstract

A novel nanocomposite foam with microcellular structures based on poly(vinylidene fluoride) (PVDF) and titanium dioxide (TiO2) was fabricated by the combination of melt compounding and supercritical carbon dioxide (scCO2) foaming. To improve its dielectric performance, silane modified and unmodified titanium dioxide nanoparticles were added as reinforcing fillers at low weight percentages (0.5, 1, and 5 wt%) during the melt blending process. It was found that the incorporation of nanoparticles had a strong influence on cell morphology. As a result, the foaming process significantly altered the dielectric, and mechanical properties of the composite foams. The dielectric constants of the composite foams were no longer frequency dependent while tan delta was lowered at least by a factor of 10. Furthermore, the porous structure generated by foaming also assisted the α-to-β phase transformation of the PVDF matrix in a way similar to mechanical stretching. Such method is superior to other phase transformation techniques since β-phase PVDF can be produced in bulk geometries instead of a thin film configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call