Abstract

For polymer foams, a high expansion rate is often required to obtain a low thermal conductivity. However, polymer foams with high expansion ratio faces a difficulty of shape recovery. In this work, polystyrene (PS)/polymethyl methacrylate (PMMA)/carbon nanotubes (CNTs) composite foams were prepared by the synergy of ultrasound and H2O in supercritical carbon dioxide (scCO2) foaming. The introduction of ultrasound and H2O is beneficial to improving expansion ratio. CNTs can enhance the melt strength of PS/PMMA, which also absorb part of the thermal radiation. Therefore, the PS/PMMA/CNTs foams with 0.5 wt% CNTs exhibits the high expansion ratio (80.7 times), low thermal conductivity (25.98 mW/mK) and 100% compression recovery in water at 85 °C after one compression. In addition, with the increasing of filler contents, the reusability of the foam is further improved. After ten compressions, the PS/PMMA/CNTs foams with 2 wt% CNTs still achieve the 99% recovery. This work provides a new way to prepare polymer foams with super-insulation and reusability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call