Abstract
This paper presents the preparation of a partially open-cell and partially closed-cell flexible polyurethane foam material (flex-PUF), which exhibits improved cushioning performance compared to conventional protective materials. Hollow Glass Microspheres (HGM) were used as a filling material to enhance the compressibility of the material. In order to investigate the effects of HGM on the multi-impact protection and vibration damping performance of flex-PUF with different thicknesses, flex-PUF samples filled with varying volume fractions of HGM were subjected to multi-impact testing and dynamic viscoelasticity experiments. The destructive mechanism of HGM under impact was observed using scanning electron microscopy (SEM). The experimental results revealed that, under the same impact energy conditions, filling flex-PUF with HGM reduced the maximum impact displacement while enhancing energy absorption, although at the expense of cushioning performance. As the number of impact increases, the stiffness of flex-PUF decreased. In the vibration experiments, as the frequency increased, the proportion of flex-PUF’s viscous damping energy dissipation decreases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.