Abstract

Gallic acid (GA) and β-glucogallin (BGG) are natural products with diverse uses in pharmaceutical, food, chemical and cosmetic industries. They are valued for their wide-ranging properties such as antioxidant, antibacterial, antidiabetic, and anticancer properties. Despite their significant importance, microbial production of GA and BGG faces challenges such as limited titers and yields, along with the incomplete understanding of BGG biosynthesis pathways in microorganisms. To address these challenges, we developed a recombinant Escherichia coli strain capable of efficiently producing GA. Our approach involved screening efficient pathway enzymes, integrating biosynthetic pathway genes into the genome while balancing carbon flux via adjusting expression levels, and strengthening the shikimate pathway to remove bottlenecks. The resultant strain achieved impressive results, producing 51.57 g/L of GA with a carbon yield of 0.45 g/g glucose and a productivity of 1.07 g/L/h. Furthermore, we extended this microbial platform to biosynthesize BGG by screening GA 1-O-glucosyltransferase, leading to the de novo production of 92.42 mg/L of BGG. This work establishes an efficient chassis for producing GA at an industrial level and provides a microbial platform for generating GA derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.