Abstract
The microbial fermentation of food has emerged as an efficient means to eliminate pesticide residues in agricultural products; however, the specific degradation characteristics and mechanisms remain unclear. In this study, a Gram-positive bacterium, Aneurinibacillus aneurinilyticus D-21, isolated from fermented Pixian Douban samples exhibited the capability to degrade 45 mg/L of cyfluthrin with an efficiency of 90.37%. Product analysis unveiled a novel cyfluthrin degradation pathway, involving the removal of the cyanide group and ammoniation of the ester bond into an amide. Whole genome analysis discovered the enzymes linked to cyfluthrin degradation, including nitrilase, esterase, carbon-nitrogen ligases, and enzymes associated with aromatic degradation. Additionally, metabolome analysis identified 140 benzenoids distributed across various aromatic metabolic pathways, further substantiating D-21's catabolic capability toward aromatics. This study underscores the exceptional pyrethroid degradation prowess of A. aneurinilyticus D-21, positioning it as a promising candidate for the biotreatment of pesticide residues in food systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.