Abstract

A two-step sidestream process was investigated for nitrogen (N) and phosphorus (P) recovery from digested sludge centrate. In the first step, a dual-chamber microbial electrolysis cell (MEC) was used for N recovery on the cathode. In the second step, P was recovered as solid precipitates by the addition of Ca2+ or Mg2+ salts in the anodic effluent. The operation of MEC with centrate indicate that N transport from the anode to the cathode chamber is primarily driven by anodic electron transport rather than diffusional transport. Low concentration of readily biodegradable organics in centrate significantly hindered current density (<0.15 A/m2) and led to trivial N recovery on the cathode chamber. The addition of primary sludge fermentation liquor (25 vol%) with centrate as an exogenous source of readily biodegradable organics substantially increased current density up to 6.4 A/m2, along with high TAN removal efficiency of 53 ± 5%. The energy requirement was calculated at 5.8 ± 0.1 kWh/kg-TAN; however, the recovered H2 gas from the cathode was adequate to offset this energy input completely. The addition of Ca2+ salt at a Ca:P molar ratio of 3:1 was optimum for P recovery from the anodic effluent; Mg:P molar ratio of 2:1 was found to be optimum for Mg2+ salt addition. However, optimum doses of both salts resulted in maximum P recovery efficiency of ∼85%, while Mg2+ addition provided an additional 38% TAN removal. These results demonstrate that microbial electrolysis followed by chemical precipitation can promote sustainable nutrients recovery from centrate at municipal wastewater treatment plants where sludge fermentation has already been adopted to provide readily biodegradable carbon source in the biological nutrient removal process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.