Abstract
Lithium-sulfur batteries (LSBs) are considered as the key candidates for the next generation of energy storage devices. However, the practical applications of LSBs are hindered by the slow conversion of sulfur species and the inhomogeneous Li+ precipitation /stripping of lithium anode. Here, we report a bifunctional thiobenzamide electrolyte additive, 4-(trifluoromethyl) thiobenzamide (TFBCA), which synergistically improves cathode redox kinetics and anode stability. Polysulfides (LiPSn) are in-situ transferred to more reactive polysulfide intermediates (T-Sn-T), which significantly improve the liquid–solid reduction process by promoting the deposition dimension of Li2S. A LiF/Li3N-rich solid electrolyte interphase is formed with TFBCA, the uniform lithium deposition is achieved and the growth of lithium dendrites is suppressed. Correspondingly, LSBs with TFBCA show a high capacity (888 mAh·g−1 at 5C) and cycling stability (0.055 % per cycle after 600 cycles at 2C). Even under high sulfur loading (7.1 mg·cm−2) and low E/S ratio of 7, the LSBs also exhibit an areal capacity of 7 mAh·cm−2 after 50 cycles, and an energy density of 314 Wh·kg−1 is achieved for the pouch cell. This work demonstrates an efficient additive strategy through molecular structure design to construct high-performance LSBs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.