Abstract

Synthetic wastewater containing 1500 mg L−1 of COD was treated in the anode chamber for 5, 10, and 20 d. An anode chamber was conducted under anaerobic conditions with mixed culture bacteria inoculum attached to the anode. Anodic effluent was transferred to the cathode chamber for further treatment for 5, 10, and 20 d as the growth medium of Chlorella vulgaris. The microalgal photosynthesis process provided oxygen for the cathodic reaction. In 5 d of anodic hydraulic retention time (HRT), the effluent contained high COD, resulting in low power generation in the P-MFC due to the heterotrophic metabolism carried out by microalgae diminishing photosynthesis. However, high biomass productivity up to 0.649 g L−1 d−1 was obtained in the subsequent treatment of 5 d in the cathode chamber. An anodic HRT of 10 d resulted in higher power generation (0.0254 kWh kg−1 COD), and higher COD removal efficiency up to 60%. A further 10 d treatment in the cathode chamber increased the COD removal efficiency up to 74%. Anode and cathode chambers combined removed 79% of NH4+–N concentration from the original synthetic wastewater within 20 d. This study demonstrated that the anodic effluent of the P-MFC can be utilized in the cathode chamber as a growth medium for microalgae if conducted with appropriate HRT in the anode. P-MFC provides a promising sustainable solution for wastewater treatment while generating electricity and algal biomass as by-products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call