Abstract
Climate change is rapidly altering Arctic marine environments, leading to warmer waters, increased river discharge, and accelerated sea ice melt. The Hudson Bay Marine System (HBMS) experiences the fastest rate of sea ice loss in the Canadian North resulting in a prolonged open water season during the summer months. We examined microbial communities in the Hudson Strait using high throughput 16s rRNA gene sequencing during the peak of summer, in which the bay was almost completely ice-free, and air temperatures were high. We found that salinity and temperature significantly affected the taxonomic composition among microbial communities across sites. We observed a higher relative abundance of specific Polaribacter sp. ASVs at more saline sites. Shannon diversity was not significantly impacted by salinity or temperature. These results contribute to our understanding of surface water microbial community composition in the Hudson Strait and shed light on how future salinity and temperature conditions may favour certain microbial populations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have