Abstract
A dynamical system defined by a metriplectic structure is a dissipative model characterized by a specific pair of tensors, which defines a Leibniz bracket; and a free energy, formed by a “Hamiltonian” and an entropy, playing the role of dynamics generator. Generally, these tensors are a Poisson bracket tensor, describing the Hamiltonian part of the dynamics, and a symmetric metric tensor, that models purely dissipative dynamics. In this paper, the metriplectic system describing a simplified two-photon absorption by a two-level atom is disclosed. The Hamiltonian component is sufficient to describe the free electromagnetic radiation. The metric component encodes the radiation–matter coupling, driving the system to an asymptotically stable state in which the excited level of the atom is populated due to absorption, and the radiation has disappeared. First, a description of the system is used, based on the real–imaginary decomposition of the electromagnetic field phasor; then, the whole metriplectic system is re-written in terms of the phase–amplitude pair, named Madelung variables. This work is intended as a first result to pave the way for applying the metriplectic formalism to many other irreversible processes in nonlinear optics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.