Abstract

Methylguanidinium is an important molecular ion, which also serves as the model compound for the arginine side chain. We studied the structure and dynamics of the methylguanidium ion at the air/water interface by molecular dynamics simulations employing the Drude polarizable force field. We found out that methylguanidinium accumulated at the interface, with a majority adopting tilted conformations. We also demonstrated that methylguanidinium and guanidinium ions had different preference toward the air/water interface. Detailed analysis of induced dipole moments showed how ions adjusted their charge distribution at the interface and revealed how the anisotropy in molecular polarizability impacted the orientation of molecular ions. Our results illustrate the importance of explicitly including the electronic polarization effects in modeling interfacial properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call