Abstract

The stable protonation state of ionizable amino acids in a protein can be predicted by computing the pKa shift of that residue within the protein environment. Thermodynamic Integration (TI) is an ideal molecular dynamics-based approach for predicting the pKa shift of ionizable protein residues. Here, we probe TI-based simulation protocols for their ability to accurately predict the pKa shift of Asp26 in thioredoxin. While implicit solvent models can predict the pKa shift accurately, explicit solvent models result in substantial errors. To understand the underlying reason for this surprising discrepancy, we investigate the role of various factors such as solvent models, conformational sampling, background charges, and polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.