Abstract
Kirkwood-Buff analysis was performed on aqueous solutions of N-methylacetamide and acetamide using the Chemistry at HARvard Molecular Mechanics additive and Drude polarizable all-atom force fields. Comparison of a range of properties with experimental results, including Kirkwood-Buff integrals, excess coordination numbers, solution densities, partial molar values, molar enthalpy of mixing, showed both models to be well behaved at higher solute concentrations with the Drude model showing systematic improvement at lower solution concentrations. However, both models showed difficulties reproducing experimental activity derivatives and the excess Gibbs energy, with the Drude model performing slightly better. At the molecular level, the improved agreement of the Drude model at low solute concentrations is due to increased structure in the solute-solute and solute-solvent interactions. The present results indicate that the explicit inclusion of electronic polarization leads to improved modeling of dilute solutions even when those properties are not included as target data during force field optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.