Abstract
Traumatic brain injury (TBI) and brain ischemia/reperfusion cause neurodegenerative processes that can continue after the acute stage with the development of severe brain atrophy with dementia. In this case, the long-term neurodegeneration of the brain is similar to the neurodegeneration characteristic of Alzheimer's disease (AD) and is associated with the accumulation of beta amyloid and tau protein. In the pathogenesis of AD as well as in the pathogenesis of cerebral ischemia and TBI oxidative stress, progressive inflammation, glial activation, blood-brain barrier dysfunction, and excessive activation of autophagy are involved, which implies the presence of many targets that can be affected by neuroprotectors. That is, multivariate cascades of nerve tissue damage represent many potential targets for therapeutic interventions. One of such substances that can be used in multi-purpose therapeutic strategies is methylene blue (MB). This drug can have an antiapoptotic and anti-inflammatory effect, activate autophagy, inhibit the aggregation of proteins with an irregular shape, inhibit NO synthase, and bypass impaired electron transfer in the respiratory chain of mitochondria. MB is a well-described treatment for methemoglobinemia, malaria, and encephalopathy caused by ifosfamide. In recent years, this drug has attracted great interest as a potential treatment for a number of neurodegenerative disorders, including the effects of TBI, ischemia, and AD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have