Abstract

Aluminum (Al) stress is known as a serious threat to the growth and production of crops in acidic soils. Here, the effects of different concentrations of methyl jasmonate (MJ, 0.5 and 1µM) on rice plants were investigated hydroponically under different concentrations of Al (0.5 and 1mM). Aluminum treatments injured membrane lipids and photosynthetic apparatus by reducing the leaf contents of mineral nutrients and increasing the accumulation of free radicals (hydrogen peroxide, methylglyoxal, and superoxide anion), resulting in reduced growth and biomass of rice. In comparison to control plants, 0.5 and 1μM Al treatments lowered height by 21 and 37% and total dry weight by 24 and 41%, respectively. Exogenously added methyl diminished the inhibitory effects of Al stress on growth and photosynthetic apparatus by restoring ion homeostasis and improving chlorophyll metabolism. The application of MJ, by inducing the activity of antioxidant enzymes and the glyoxalase cycle, lessened the levels of the toxic compounds hydrogen peroxide, methylglyoxal, and superoxide anion and, as a result, dwindled the toxic Al-induced oxidative stress. Methyl jasmonate enhanced the leaf accumulation of nonprotein thiol compounds and improved plant tolerance under Al stress by increasing the activity of enzymes involved in the synthesis of thiol compounds. Methyl jasmonate increased the leaf accumulation of glutathione and phytochelatins in Al-stressed plants by increasing the expression of GSH1, PCS, and ABCC1, which reduced the toxicity of toxic Al accumulated in leaves by sequestering toxic Al in vacuoles. Together, the results revealed that MJ increased the tolerance of rice under Al toxicity by maintaining ion homeostasis, improving the activity of antioxidant enzymes and the glyoxalase system, and increasing the level of non-protein thiol compounds. This research adds to our understanding of how MJ may be used in the future to improve Al stress tolerance in sustainable agriculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call