Abstract

High relative permittivity and low dielectric loss were simultaneously achieved in the percolative nanocomposites with methoxypolyethylene glycol (mPEG) modified multi-walled carbon nanotubes (MWCNTs). The dense mPEG layer with a thickness of approximately 1.7nm was continuously coated on the surface of MWCNTs. MWCNTs exhibited excellent dispersibility after being functionalized by mPEG (mPEG@MWCNTs), the mPEG@MWCNTs/ethanol suspension was still turbid even when the suspension was deposited for two months. A high permittivity of 69.7 and a low dielectric loss of 0.042 were simultaneously achieved in the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) nanocomposite with 4.02vol% mPEG@MWCNTs at 1kHz. The improved dielectric properties in the nanocomposite is mainly ascribed to the following reasons: (i) the increased microcapacitors formed by MWCNTs and insulated dielectric composite; (ii) the enhanced interfacial polarization due to the homogeneous dispersion of mPEG@MWCNTs in the nanocomposites and tight adhesion between mPEG@MWCNTs and P(VDF-HFP) matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call