Abstract
Dielectric materials with lightweight, high heat resistance, high dielectric permittivity, and low dielectric loss are highly desirable for dielectrics. Herein, lightweight and highly heat‐resistant microcellular polyetherimide/barium titanate/multiwalled carbon nanotube (PEI/BaTiO3/MWCNT) nanocomposites with high dielectric permittivity and low dielectric loss are fabricated via the efficient physically microcellular foaming method. The resultant microcellular PEI/BaTiO3/MWCNT nanocomposites with the BaTiO3/MWCNT content of 8 wt% exhibit a high dielectric permittivity of 18.7 and a low dielectric loss of 0.35 with a low relative density of 0.26. Owing to the heterogeneous cell nucleation effect, the microcellular PEI/BaTiO3/MWCNT nanocomposites present much more uniform cellular structures with larger cell density and smaller cell size compared with the microcellular PEI. The physically microcellular foaming slightly decreases the dielectric permittivity and dramatically decreases the dielectric loss of the nanocomposites. Compared with the solid and microcellular PEI/BaTiO3 nanocomposites, the microcellular PEI/BaTiO3/MWCNT nanocomposites exhibit dramatically increased dielectric permittivity with low filler content. The results indicate that the lightweight and highly heat‐resistant microcellular PEI/BaTiO3/MWCNT nanocomposites with high dielectric permittivity and low dielectric loss have excellent potential for dielectrics in areas such as aerospace, electronics, and military engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.