Abstract
This study presents the design of a small open-circuit wind tunnel for laboratory use and a method for preparing columnar ice. The ice formation process was analyzed in terms of temperature and ice thickness variations under varying environmental temperatures and wind speeds. Observations revealed that as wind speed increased, the grain size of the columnar ice decreased. Key findings include the following: (1) the selection and validation of two cubic arcs for the wind tunnel contraction section, achieving an acceleration ratio of 6.7–6.8 and stable wind speeds of 1–10 m/s; (2) real-time temperature monitoring indicated rapid cooling before freezing and slower cooling post-freezing, with lower ambient temperatures and higher wind speeds accelerating the icing process; (3) the −1/2 power of grain size was found to be positively correlated with wind speed; and (4) the method’s feasibility for studying mechanical properties of polar columnar ice was confirmed. This technique offers a controlled approach for producing columnar ice in the laboratory, facilitating comprehensive research on ice properties and providing a foundation for future studies on the mechanical behavior of ice under windy polar conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.