Abstract
A precise knowledge of methane exchange processes is required to fully understand the recent rise of atmospheric methane concentration. Three of these processes take place at the lithosphere/atmosphere boundary: bacterial consumption of methane and emission of bacterial or thermogenic methane. This study was initiated to quantify these processes on a regional scale in the Ruhr Basin and the Lower Rhine Embayment. Since these areas are subject to bituminous coal and lignite mining, natural and anthropogenically-induced methane exchange processes could be studied. The methane emission and consumption rates and their carbon isotope signal were measured at the lithosphere/atmosphere boundary using flux chambers. On most of the soils studied, methane consumption by bacteria was identified. Thermogenic methane was released only at some of the natural faults examined. In active and abandoned bituminous coal mining areas methane emissions were restricted to small areas, where high emission rates were measured. The carbon isotope composition of methane at natural faults and in mining subsidence troughs was typical of thermogenic methane (−45 to −32 ‰ δ13C). Methane exchange balancing revealed that natural methane emissions from these two basins represent no source of atmospheric importance. However, methane release by upcast mining shafts dominates the methane exchange processes and is by about two orders of magnitude greater than methane consumption by bacterial oxidation in the soils.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have