Abstract
Coastal wetlands are an important source of methane emissions, and understanding the mechanisms that control methane emissions from coastal wetlands is of great significance to global warming. Anaerobic oxidation of methane driven by sulfate is an important process to prevent methane emissions from coastal wetlands. The effects of environmental changes on this process and the function of the sulfate-methane transition zone (SMTZ) are poorly understood. In this study, spatiotemporal variations in pore-water geochemistry (concentrations of SO42-, CH4 and DIC as well as δ13C-DIC and δ13C-CH4) in the Beidagang wetland, Tianjin, China, were investigated to unravel factors controlling the role of anaerobic oxidation of methane in coastal wetlands. Results show that the geochemical profile of pore-water is characterized by significant spatial and temporal variability, which may be related to changes in sulfate concentration, temperature and dissolved oxygen. The carbon isotope fractionation factors (εC) during methane oxidation range from 8.9‰ to 12.5‰, indicating that the sulfate-driven anaerobic oxidation of methane (S-AOM) dominates the methane oxidation in the Beidagang coastal wetland in both winter and summer, in both high and low salinity wetlands, and in both open water and littoral areas. However, sulfate concentration has a strong influence on the sulfate reduction pathways and methane consumption. The consumption of methane and sulfate by S-AOM is more significant in coastal wetlands with high sulfate concentrations, with S-AOM consuming nearly all of the upward-diffusing methane (96%) and downward-diffusing sulfate (96%). In addition, the dissolved inorganic carbon (DIC) produced in the pore-water mainly comes from methanogenesis, accounting for more than 80% of the total DIC pool, but in the areas with high sulfate concentrations in water column, the contribution of S-AOM to the DIC pool is greater, although only a small fraction of the total DIC pool (9%). The depth and width of the SMTZ show a clear spatial and temporal pattern, with active methanogenesis activity and upward high methane flux shoaling the SMTZ and increasing the risk of high methane emissions from coastal wetlands with low sulfate concentrations. Our findings highlight the importance of sulfate-driven anaerobic oxidation of methane in coastal wetlands and the effect of sulfate concentration on it. It contributes to our understanding of the mechanism of methane production and emissions from the coastal wetland system, particularly in light of the increased demand for coastal wetland restoration under global warming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.