Abstract

The regularities of formation of metastable states and their disintegration under pulse liquid heating and electrical heating and explosion of conductors are studied. With a high energy flux density, the phase transitions occur with a high intensity of heat and mass fluxes, leading to spontaneous generation of a new phase and to phase explosion. The basic features of bubble-like disintegration in not uniformly superheated water and alcohol layers on the microheater are found. Regularities of matter disintegration with electrically exploded conductors are obtained. The metastable liquid disintegration is experimentally investigated for characteristic times of matter transfer to a metastable state of 1 to 4 µs; phase transitions during electric conductor explosion are studied at characteristic times of transfer to a metastable state to 200 ns. A common approach to describing the effects with radically different characteristic times of transfer of the matter to a metastable state is developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call