Abstract
The regularities of formation of metastable states and their disintegration under pulse liquid heating and electrical heating and explosion of conductors are studied. With a high energy flux density, the phase transitions occur with a high intensity of heat and mass fluxes, leading to spontaneous generation of a new phase and to phase explosion. The basic features of bubble-like disintegration in not uniformly superheated water and alcohol layers on the microheater are found. Regularities of matter disintegration with electrically exploded conductors are obtained. The metastable liquid disintegration is experimentally investigated for characteristic times of matter transfer to a metastable state of 1 to 4 µs; phase transitions during electric conductor explosion are studied at characteristic times of transfer to a metastable state to 200 ns. A common approach to describing the effects with radically different characteristic times of transfer of the matter to a metastable state is developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.