Abstract
Metastability is a ubiquitous phenomenon in nature, which interests several fields of natural sciences. Since metastability is a genuine non-equilibrium phenomenon, its description in the framework of thermodynamics and statistical mechanics has progressed slowly for a long time. Since the publication of the first seminal paper in which the metastable behavior of the mean field Curie–Weiss model was approached by means of stochastic techniques, this topic has been largely studied by the scientific community. Several papers and books have been published in which many different spin models were studied and different approaches were developed. In this review, we focus on the comparison between the metastable behavior of synchronous and asynchronous dynamics, namely, stochastic processes in discrete time in which, at each time, either all the spins or one single spin is updated. In particular, we discuss how two different stochastic implementations of the very same Hamiltonian give rise to different metastable behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.