Abstract

Metal-organic frameworks (MOFs) have gained incredible consideration in the biomedical field due to their flexible structural configuration, tunable pore size and tailorable surface modification. These inherent characteristics of MOFs portray numerous merits as potential drug carriers, depicting improved drug loading, site-specific drug delivery, biocompatibility, biodegradability, etc. The current review article sheds light on the synthesis and use of MOFs in drug delivery applications. In the beginning, a brief overview of the key components and efficient fabrication techniques for MOF synthesis, along with its characterization methods, have been presented. The MOFs-based formulations have been critically discussed. The application of the design of experiments (DoE) approach to optimize MOFs has been elucidated. The MOFs-based formulations, especially the application of stimuli-responsive MOFs for site-specific drug delivery, have been deciphered. Along with drug release kinetic models, several administration methods for MOFs have also been enunciated. Subsequently, MOFs as future potential drug carriers have been elaborated. Recently, MOFs have emerged as versatile drug delivery carriers possessing customization potential and meeting the needs of spatio-temporal drug delivery. Researchers have devised several environment-friendly approaches for MOF construction and surface modification. Owing to stimuli-responsive potential, MOFs have demonstrated their prominent therapeutic efficacy via several routes of administration. The numerous benefits of MOFs would certainly open up a new vista for its novel drug delivery applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.