Abstract

The structural integrity of mechanical components is assessed by FBG sensors in many industrial fields. The FBG sensor has a relevant application at very high or low temperatures. To avoid the variability of the reflected spectrum and the mechanical properties degradation of the FBG sensor, metal coatings have been used to guarantee the grating's integrity in extreme temperature environments. Particularly, at high temperatures, Ni could be a suitable selection as a coating to improve the features of FBG sensors. Furthermore, it was demonstrated that Ni coating and high-temperature treatments can recover a broken, seemingly unusable sensor. In this work, two main objectives were pursued: first, the determination of the best operative parameters to achieve the most compact, adherent, and homogeneous coating; second, the correlation between the obtained morphology and structure and the FBG spectrum modification, once Ni was deposited on the FBG sensor. The Ni coating was deposited from aqueous solutions. By performing heat treatments of the Ni-coated FBG sensor, it was investigated how the wavelength (WL) varied as a function of temperature and how that variation was caused by the structural or dimensional change of the Ni coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.