Abstract
The feasibility of using directly coupled size exclusion high-performance liquid chromatography inductively coupled plasma mass spectroscopy (HPLC/ICP-MS) for the separation and subsequent elemental analysis of metalloproteins in biological samples has been studied. Data, on up to eight elements, was acquired simultaneously and the reconstructed elemental profiles from the chromatographed samples were quantified by flow injection analysis. Absolute and relative detection limits, reproducibility, operational dynamic range, and linearity of response were initially evaluated by analyzing standards of metallothionein protein of known elemental composition for Cd, Zn, and Cu. There was evidence of displacement of Zn from the protein during chromatography and the substitution of Cu sequestered from the mobile phase. Cd associated with the protein was fully recovered during chromatography. Memory effects, due to protein adsorption to the glassware in the torch box, were minimal and there was no degradation of the resolution of the chromatographed peak during extended transport through the HPLC/ICP-MS interface. The versatility of the technique has been demonstrated by the quantitative multi-element analysis of cytosolic metal-binding proteins separated from the polychaete worm Neanthes arenaceodentata. Fidelity of analysis has been demonstrated by two independent procedures: first, by comparing the elemental profiles obtained by directly aspirating the HPLC eluant into the ICP-MS to those obtained by collecting fractions and quantifying the metal content of the proteins in the conventional analytical mode; second, by comparing the stable isotopic profiles for 114Cd obtained by simultaneous ICP-MS analysis with radiometric profiles of 109Cd obtained by counting radioactivity associated with collected fractions.(ABSTRACT TRUNCATED AT 250 WORDS)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have