Abstract
We report a composite material consisting of precipitated micron-scale Ta-rich solid solution particles distributed in a bulk metallic glass matrix. The reinforcing ductile particles are precipitated during melting of the master alloy of glass-forming (Zr70Ni10Cu20)82Ta8Al10, by using previously prepared metastable Zr–Ta solid solution binary ingots. Upon cooling from the melt, the matrix undergoes a glass transition to produce an amorphous phase while the particles of precipitated Ta solid solution are distributed in the glass matrix. The resulting material not only shows high strength (∼2.1 GPa), but also has dramatically enhanced plastic strain to failure in uniaxial compression relative to single-phase bulk metallic glasses. The composite also displays limited tensile ductility.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have