Abstract

Abstract Despite the in-depth understanding of the amine-based post-combustion CO2 capture technique gained by research efforts made over the decades, its large-scale practicality is hindered by extensive energy input in desorption and solvent degradation issues. The most thoroughly studied alkanolamine solvent, monoethanolamine (MEA), is still unable to capture a significant portion of CO2 emissions at a bearable economic penalty, owing to these serious drawbacks. Herein, we demonstrate catalytic regeneration of MEA solvent with five commercially available metal oxide catalysts Ag2O, Nb2O5, NiO, CuO, and MnO2 which would render this process suitable for achieving a bearable penalty. CO2-rich MEA solvent with an initial loading of 0.50 mol CO2/mol MEA was used in this study. A temperature range of interest was selected to perform the experiments in order to identify the optimal operating temperature for each of the catalysts used in this study. The results show that all of the catalysts used in this study improve the MEA regeneration where Ag2O presents the best regeneration performance followed by Nb2O5 by desorbing up to 3.6 and 2.5 times greater CO2 amounts with faster desorption rates, respectively. Overall, the results show that the MEA solvent can be regenerated at temperature as low as 80 °C, and hence a significant reduction in heat requirement for solvent regeneration is possible. Besides, at this temperature, thermal degradation of the solvent can be avoided completely. Furthermore, as a considerable improvement in the CO2 desorption rate and cyclic capacity is achieved by the catalytic regeneration process, the size of the stripper and the solvent circulation rate can be reduced, which will decrease the capital and operating cost as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call