Abstract

Owing to their high energy density, lithium-oxygen batteries (LOBs) have been drawn great attention as one of the promising electrochemical energy sources. However, the sluggish kinetics of oxygen reduction/evolution reaction (ORR/OER) hamper the widespread application of LOBs. Herein, an elaborate designed catalysts which are constructed by FeNx moieties dispersed on the network-like hollow dodecahedral carbon and then decorated with Ru nanoparticles (FeNx-HDC@Ru). Since the homogeneously dispersed FeNx moieties could promote ORR performance, and the Ru nanoparticles could facilitate OER capability, the FeNx-HDC@Ru nanocomposites used as cathode catalysts can significantly improve LOBs performance. A lower discharge and charge overpotentials of 0.15 V and 0.78 V can be detected in the first cycle, respectively, and an excellent cycle performance of 90 cycles at 200 mA g−1 and 89 cycles at 500 mA g−1 can be demonstrated. Herein, the charge transfer kinetics has been enhanced with the internal network-like hollow structure and a low impedance Li2O2/catalysts contact interface could be earned by the constructed Ru nanoparticles, these factors would lead to an efficient acceleration to the formation and decomposition of Li2O2 during discharge and charge process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.