Abstract

Semiconducting iron disilicide (β-FeSi2) island grains of a few hundred nanometers in diameter were formed on the surface of Si powder by metal–organic chemical vapor deposition. On Au-coated Si powder, the Au–Si liquidus phase was obtained by melting the Si surface via the Au–Si eutectic reaction, which contributed to the formation of island grains. The dramatic decrease in the defect density in β-FeSi2, which was due to this growth mechanism, was confirmed by the photoluminescence properties. The β-FeSi2/Si composite powder could evolve hydrogen from formaldehyde aqueous solution under irradiation of visible light with wavelengths of 420–650 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.