Abstract
We report on green-emitting In0.18Ga0.82N/GaN multi-quantum well (MQW) structures over a variety of metalorganic chemical vapor deposition (MOCVD) growth conditions to examine the morphology, optical quality, and micron-scale emission properties. The MOCVD growth parameter space was analyzed utilizing two orthogonal metrics which allows comparing and optimizing growth conditions over a wide range of process parameters: effective gas speed, S*, and effective V/III ratio, V/III*. Optimized growth conditions with high V/III, low gas speed, and slow growth rates resulted in improved crystal quality, PL emission efficiency, and micron-scale wavelength uniformity. One of the main challenges in green MQWs with high Indium content is the formation of Indium inclusion type defects due to the large lattice mismatch combined with the miscibility gap between GaN and InN. An effective way of eliminating Indium inclusions was demonstrated by introducing a small fraction of H 2 (2.7%) in the gas composition during the growth of high temperature GaN quantum barriers. In addition, the positive effects of employing an InGaN/GaN superlattice (SL) underlayer to crystal quality and micron-scale emission uniformity was demonstrated, which is of special interest for applications such as micro-LEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.