Abstract
By combining capacitance-voltage measurements, TCAD simulations, and X-ray photoelectron spectroscopy, the impact of the work function of the gate metals Ti, Mo, Pd, and Ni on the defects in bulk HfO2 and at the HfO2/InGaAs interfaces are studied. The oxidation at Ti/HfO2 is found to create the highest density of interface and border traps, while a stable interface at the Mo/HfO2 interface leads to the smallest density of traps in our sample. The extracted values of Dit of 1.27 × 1011 eV-1cm-2 for acceptor-like traps and 3.81 × 1011 eV-1cm-2 for donor-like traps are the lowest reported to date. The density and lifetimes of border traps in HfO2 are examined using the Heiman function and strongly affect the hysteresis of capacitance-voltage curves. The results help systematically guide the choice of gate metal for InGaAs.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.