Abstract
This study addresses the challenge of multi-dimensional and small gas sensor data classification using a gelatin–carbon black (CB-GE) composite film sensor, achieving 91.7% accuracy in differentiating gas types (ethanol, acetone, and air). Key techniques include Principal Component Analysis (PCA) for dimensionality reduction, the Synthetic Minority Over-sampling Technique (SMOTE) for data augmentation, and the Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) algorithms for classification. PCA improved KNN and SVM classification, boosting the Area Under the Curve (AUC) scores by 15.7% and 25.2%, respectively. SMOTE increased KNN’s accuracy by 2.1%, preserving data structure better than polynomial fitting. The results demonstrate a scalable approach to enhancing classification accuracy under data constraints. This approach shows promise for expanding gas sensor applicability in fields where data limitations previously restricted reliability and effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.