Abstract

Photocatalytic overall water splitting is a promising approach to overcome the environmental and energy crisis. However, developing effective photocatalysts with well activity, light absorption, and photogenerated carrier lifetime is still a challenge. Herein, combining extensive first-principles and nonadiabatic molecular dynamics calculations, we find that microporous carbon-nitride nanosheets with a pyridinic nitrogen, such as C2N and C6N6, possess the pentacoordinated silicon intermediates' bonding environment. The pentacoordinated silicon as intermediates exhibits good photocatalytic performance for the difficult four-electronic oxygen evolution reaction. The overpotential is only 0.55 V for C2N, which is significantly lower than that of the tetracoordinated silicon intermediates (2.00 V). Simultaneously, the decoration of the silicon group not only widens the absorption range of visible light but also maintains the lifetime of photogenerated carriers on the nanosecond scale, which enhances the application efficiency of solar energy. Our work paves a new route for advancing photocatalytic overall water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.