Abstract
The overall water splitting based on specific photocatalysts is one of the ultimate ways to solve the energy and environmental crisis facing humanity. Sulfide photocatalysts have greater potential in photocatalytic production of solar fuel. However, due to its easy photocorrosion phenomenon, it not effectively driving the water oxidation semi-reaction to produce oxygen, so how to use sulfide photocatalyst to decompose pure water to achieve stoichiometric reaction of H2/O2 production remains a quite challenging task. Herein, sulfur vacancies-rich MnCdS nanoparticles were modified with NiS nanosheets through the hydrothermal derivation method. Different concentration gradients of sulfur-vacancy in MnCdS nanoparticles (MnCdS-Vs-X) with tunable band structures were successful prepared by regulating the concentration of hydrazine hydrate, thus improves the efficiency of light energy utilization and charge separation and the existence of S defects was verified by transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR). The density function theory (DFT) calculation bears out that the draw into of S vacancy adjusted the band structure of MnCdS. Moreover, the successful construction of an S-scheme heterojunction between NiS and MnCdS-Vs-3 has been strongly demonstrated by in-situ XPS and UPS, which promoted interfacial charge separation and further improved the photocatalytic hydrogen evolution efficiency. The as-obtained S-scheme 20 %NiS/MnCdS-Vs-3 heterojunction exhibit excellent visible-light H2 production activity of 4099.55 μmol g−1h−1, 6.75 times higher than pure MnCdS. Most importantly, the excellent and stable photocatalytic overall water splitting activity of H2-509.70 μmol g-1h−1/O2-254.90 μmol g-1h−1 were obtained over 20 % NiS/MnCdS-Vs-3, which further demonstrates the application value of NiS/MnCdS-Vs-3 photocatalysts. This work proposes new ideas for the application of S-vacancies and S-scheme heterojunction in addressing the stability issues associated with sulfide-based photocatalysts in photocatalytic water splitting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.