Abstract
Compared with single-atom catalysts, clusters not only possess more metal-loadings and stability but also provide flexible active sites to break the linear scaling relationship of multistep reactions. However, exploring precise structure-activity relationships and the synergistic effect between clusters and nanosheets is still in its infancy. Here, based on first-principles and nonequilibrium Green's function simulation, the C2N-supported Fe and Co tetrahedral clusters exhibit remarkable bifunctional catalytic performance with a very low overpotential of hydrogen (0.12 and 0.07 V) /oxygen (0.20 and 0.55 V) evolution reactions (HER/OER), respectively. The C2N-regulated Fe and Co clusters have suitable d-band centers around the Fermi surface for HER. In turn, the Fe and Co clusters activate the subadjacent dual-carbon sites for OER. Simultaneously, the cluster enhances the electronic conductivity of C2N, and the initial current only needs ultralow bias voltage around 0.1-0.4 V. The desired metal cluster regulation strategy offers cost-effective potential for advancing clean energy technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.